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ON LIBRATION POINTS NEAR A GRAVITATING AND ROTATING TRIAXIAL ELLIPSOID* 

I. I. KOSENKO 

The problem of the motion of a passively gravitating point near the relative equili- 
brium position around a uniformly rotating ellipsoid with principal semiaxes of 
arbitrary lengths is examined. A system of parameters defining the problem,inwhich 
the domain wherein the necessary stability conditions are fulfilled, is selected. 
Certain qualitative properties of the mechanical system being examined are revealed 
by an analysis of the domain's geometric structure. 

The problem of a satellite's motion in a neighborhood of the relative equilibrium posi- 
tion near a rotating planet having the form of a triaxial ellipsoid was examined in /l/ in a 
linear setting and in /2/ in a nonlinear one. The ellipsoid was assumed to be nearly a ball, 
which corresponds to real planets. However, objects having a clearly expressed ellipsoidal 
form do exist (for example, elliptic galaxies); therefore,the problem of the motion of a 
satellite in a neighborhood of the libration points of a rotating ellipsoid with principal 
semiaxes of arbitrary lengths is of definite interest. In addition, an investigation of 
the problem in a general setting permits a sufficiently rapid obtaining of qualitative con- 
clusions on the mechanical properties of the motion for a planet close in form to a ball. 

1. Statement of the problem. Assume that a homogeneous ellipsoid of mass fif with 
principal axes OA, OB, OC of lengths a, b, c respectively (Fig.l), rotates uniformly around 
the axis OC with angular velocity (I). We choose a coordinate system with axes ox, oy, oz 
directed towards A,B,C respectively. 
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We introduce the charateristic length 1 by the relations a = ICC. 6 = Ef3, c = ly, a2 + 

6’ + y* = 1. The triple (a, p,y) specifies the representative point on a spherical triangle 
S+* defined by the inequalities a> 0, p > 0. y> 0. As the chracteristic time we take the 

ellipsoid's rotation period around its axis and we introduce dimensional variables by the 
formulas 

t == T I 0, x = lq,, y = lq,, z = 1q3 

The problem's parameter space can be defined as the set of pairs 

JI:; = {(s, p)}, s E S+2, p E R,' = {p : p > O), p -: :ijM / (4~~17 

It is natural to identify it with the R+3-octant in R3 

~ 
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R+* = {@I, s2* 4 : 81 = pa, s2 = pfl, s, = py} 

Using the Legendre transformation we arrive at the canonic phase variables (P1,p2, ps). As a 
result we obtain the system of Hamiltonian equations 

qi’ = &!I I apt, pi = - HZ I aqi, i = 1, 2, 3 

CT 

Hiq,p)=+ (Pw- $9 -!-PI’) + (p1q2-JJ&)- pi (1 -*+ *-$&q$ 

P 

s (24) = t(d + u) (B2 + 11) (r* + u)l”‘, 4: I (a” + p) + 4: 1 (B” + PI + !h2 I (v’ + cc) = 1’ 

2. Libration points. From the relations 

it follows that the libration points lie in the equatorial plane q8 = 0, since F (p, v’) >O 
always.in ns and the closeness in form to a sphere, required in /S/, is not necessary. We 
now consider the reamining equilibrium equations under the condition q; = p3 = 0: 

afi ! 8p ,=p1+qn=o, alz/apI=pI-qQ1=o 

8H i: aq, = - pI + 2pq,F (p, a’) = 0, aH / aqt = p1 +2pq2F (p, fJ*) = 0 

91” : (a2 + p) + q*2 / (B” + p) = i 

Two combinations of solutions are possible when a# B (the case ql=q% = 0 correeponds to 
a point at the ellipsoid's center ana, therefore, is omitted). The coordinates of the libra- 
tion points satisfy the equations 

q1 I!-2pF (p, a31 = 0, 
Hence 

qr II-2pP (f.4, /-P)l = 0 

91 = 0, i-2pF (qaZ - g*, 8%) = 0; q1 = 0, q* = * q*“, q2 = 0, I-2pF (qr2 - as, a’) = 0; q1 = f q,o, q2 = 0 

When a = $ the planet becomes an ellipsoid of revolution and the equilibrirnp positions are 
not isolated aa are located on the circle q12 + qez = aa, where p satisfies the equation 

aa the integral is computed in finite form in terms of elementary functions. By virtue of 
the problem's s-try we can restrict the study only to the libration point PI :q, = qc, q2 = 
q$o = 0, QJ = qsO = 0. The condition for its existence is the condition for the solvability of 
the equation 

I-2pF (p, u2) = 0 

relative to p for p >O. It is expressed by the inequality 2pF(p,u2)> 1 defining in IP = 
R+S the subset of admissible parameters for which the existence of point P, is possible. 

3. Stability domain. For a local investigation in a neighborhood of point p,we pass 
tonewphase variables by the contact transformation (q,p) -(q’,p’) with the generating func- 
tion 

u = j$* hi - 4P) (Pj' i- Pj"), Pie= 0, fiO = sl”, p*“=O 

whence 
Q~‘=~Ul~p~=~i-~~,pi=~U~~~i=p*'+p~,i=1,2,.7 

Treating (2.1) as an equation in p, 
(v, a, B9 s). we obtain the mapping 

enabling us to express it in the new parameter system 

(v, a, 13, Y) 2 (p, a, p, y)- p-l= 2F (v, a') 
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diffeomorphically taking R+3 onto the domain of admissible values of the parameters. thus, 
all points of R :1 are admissible for (t', a, 13, y) . 
ude of p also glows monotonically from 

As Y grows from zero to too the magnit- 
0 

point (a, p,y) on S,? . 
O .= 12F(O,a')J-* to loo along the ray defined by the 

The system of parameters (v,a,g,y) is more convenient, for example, 
than the fact that all the expressions for the coefficients of the power expansion of If in 
a neighborhood of point P, are explicit functions of sufficiently simple structure. 

As a result of a significant amount of analytical computations we have obtained terms of 
second degreee in the phase variables ($7 P')> occurring in thepower series for theBami.ltonian. 
In sum they yield the quadratic form 

Here 

vi = F (v, a"), cpz = P (Y. fl'). cp3 = F (V, y:) 

The characteristic equation of the first approximation system is 

k' -t L”(2% - (Pa) :i ‘PI + (cpl + qp t qs) (‘1’1 - ‘ps) ,’ ‘pl”l(A’ t (p3 ! qJ = 0 

(3.1) 

In the linear approximation the satellite performs normal oscillations with frequency (~~I(~~)1112 
with respect to coordinate qs’ (this can be seen already from the expression for H,). In order 
that the roots of the characteristic equation of planar motion be pure imaginary and distinct, 
it is necessary and sufficient to fulfil the conditions ensuring the possibility of linear 
normalization 

We have obtained the sequence of mappings 

R3TR "_"RZ 
+)+'I T (I’, a, 0. 19 = CR, ~‘2. (~3) E R+‘, n (~1, ~2, (~3) = ((oz/ ~1. (~3 i ‘~1) E R’ 

Denoting (o~Ic(,~ = g,cp,/(FI = h, we see that H,, and, hence, the first approximation system, 
dependsonlyon the two parameters g and h. We note as well that 'pl,'pz,'ps are homogeneous 
coordinates of a point in the parameter space (g,h), while n is a central projection mapping 
with center at the origin on the plane (F, = 1. 

In the new parameter system the stability conditions are 

(h / 2 + g)" - 212 > 0, h ( 2, 11 (g - I)< (1 - R) (1 + n) 

Because g> 0 and h > 0 the last inequality is equivalent to the condition g< 1. The 
frequencies of the normal oscillations are 

WI,2 = {l - h i 2 f l(h / 2 -t g)2 - 2hl'lZ}'/J, O< Wl< w1 

The stability domain obtained is shown in Fig.2. The same figure shows the resonance curves 

for resonances of first, second, third and fourth orders (curves 1-4, respectively). 

4. Theorem on the stability property. By S we denote the shaded domain in Fig.2. 
This is the section of the cone s-l(S) by the plane 'pl = 1 in the space (CJJ~, 'pz, rp3); the 

cone's vertex is at the origin. The stability domain in parameters cpl> 'pa7 (P3 is shown in Fig. 

3. The resonance sets are pieces of conic surfaces passing through the corresponding curves 
in the section (pl = 1 and the origin. We are not interested in the whole cone indicated, 

but only in the set Z = n-l(S) 11 'p (R+S) which corresponds precisely with the stability domain 
cp-'(2) in the original parameter system (Y, a, B, y). 

In order to ascertain the structure of set Z we need to study in detail the properties 
of mapping 'p: R+3 --+ IZ c R+S. We fix a,P,v and we determine the image of a ray in R+S for 

o<v<+00. This is the curve specified by the parametric Eqs.(3.1). Obviously, vi30 as 

Y + +m (i = 1, 2, 3) and 

for the tangent along the curve. Hence we see that the image of any ray is tangent to the 
straight line 

(11 = 'Fz = (P3 (4.1) 
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as point (O,O,O) . Let us consider the spherical triangle S+$defining the domain of admis- 

sible parameters a, fl, y (Fig.4); P is a represenative point on S+'. Domain cp(R+') is eYm_ 
metric relative to line (4.1) (it goes into itself under a rotation around line (4.1) by 1200). 

The curves (3.1) are tangent to (4.1) as v+ +m and, as v+O+ border on the surface speci- 

fied by the parametric Eqs.(3.1) if in them substitute v = 0. These equations yield the map- 

ping 9": S+a 3 R+*. The points and the arcs corresponding to each other under the action of lp" 

are denoted by like digits on Fig.4. 
Let open arcs L,,L,,L, and points R1,Re,R8 (see Fig.41 bound S+' on 9. If P 3 L1, 

then for the corresponding point 9" (P) 

cp10 (P) 3 +a3 ( cp,” (P) 3 const, cp,” (P) 3 const 

and then from P+L3 follows 

'PI0 (P) -+ const, rpz” (P) 3 cod., cps” (P) + +m 

and from P+L, follows 

(pl' (P)+- const, cpso (P)+ -+a~, (p3' (P)+ const 

If PeRi, then cp;+ +a, (i, f = 1, 2, 3). Let us consider the image of the cone consisting 
of rays passing through a piece of the surface S+*, bounded by the contour (1234561), and 
symmetric with respect to the straight line a=fi=v. As v-+0 the image of each rayabuts 
the point $(a, p,y) of surface (3.1) (with v = 0); when v-+ +w, all the rays, as noted 
above, have the common tangent 'p1 = 'p2 = 'pa. The desired image of the contour is a geometric 
figure symmetric relative to line (4.1), resembling a three-petalled flower growing from the 
origin 'p, = qe ='ps = 0 in the direction of its axis (4.1). The flower's petals comprise a 
piece of surface (3.1) (with v = 0), bounded by the image of contour (1234561). 

Examiningtheintersection of surface cp" (S+*) with the cone n-l(S) (it is shaded in Fig.4) 
and taking into account the correspondence of boundaries showninFig.4,wecanobtaina central 
projection of the stability domain in space (v, a, PI?) onto It is shown in Fig.5, 
where, as in Fig.4, S+% 

S+*. 
is depicted as an equilateral triangle with vertices RI, R2,R3. The 

segment R,T corresponds to ellipsoids of revolution (a = p) and the point 0 (the center of 
S+a) corresponds to a spherical planet (a= fi = y). The shaded triangle R,R,T is the 

stability danain's projection mentioned. The cross-hatching denotes a domain (MN&,) in 
which first approximation stability obtains for all O<v <+oo and, hence, for all admis- 
sible p. The single shading corresponds to rays defined by the points on S+' at which stab- 
ility holds, but not everywhere for v E (0,-l-co), i.e., a reorganization of the types of the 
singular point P,takes place as v grows along a ray. The curve MN separating thesedomains 
is shown approximately in Fig.5. It is important only that it be located at a finitedistance 
from point 0 and from the interval (OR,) corresponding to prolate ellipsoids of revolution. 

We select sufficiently narrow cones C, and C' enclosing the lines (4.1) and a = fi = y, 
such that 'p (C')C C,. This can be done by virtue of a) the continuity of mapping cp and b) 
the fact that the images of all rays are tangent to line (4.1). As a matter of fact, from 
property b) it follows that for every cone CCR+~ there exists vO>O such that the 
image of set C n {(~,a, p, 13) v >vg} lies in &when v>vO. Further, from analysis we know 
the simple 

Assertion. The convergence 

f (T Y) -+ f (G !/oh Yo E G, y 4 y, 

holds uniformly on K for a continuous mapping f: K x G+R*, where K is a compact space 
and G is an open set (K and G are assumed imbedded in some metric space). 

We set f = cp, K = [O, vol, G = {(a, p, y): aP+Ba+rs=Ir a>l/JfZ-6, f_!>1/1/5-i3, 

y>l/1/5-6) 

where 6 is sufficiently small, y, = (1/1/z, 1/1/z, 1 /fl); KC R+‘= {z :x> O), G = S,?, where 
R+l and S+% have the natural structure of metric spaces. Since e: R+8 = R,' x S+*+ R*, we 
can apply the Assertion made shove. Consequently, we can choose a sufficiently narrow cone 
C'C C enclosing the line a = fi = y, such that the images of all its component rays lie 

in c, when v E IO, vol . But for v> v. they stay in C, a fortiori. 
the structure of a direct product; 

In R+3 we introduce 
then we can represent it as an octant from which we throw 

out the intersection with a ball centered at the origin. In this connection the part of the 
boundary, specified by the equality v = 0, is a spherical triangle s+2 . From formula 
(3.1) we see that for corresponding points a2 6 equivalently '~~5 q?. Therefore, if a< f~ 
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for a ray, then (ll, ".s(~ for its whole image, i.e., stability holds for all v ;. 0. Analog- 
ously, when c() $ instability holds for all v>o. However, this conclusion is true only 
in C'. Thus, dimension arguments, as well as the geometric conclusions presented, enabled 
us to prove the following theorem on the stability property. 

Theorem. For an ellipsoidal planet, sufficiently close in form to a sphere, the libra- 
tion point's property of being stable in the first approximation depends only on the ellip- 
soid's form and does not depend on the mass, the linear sizes, and the planet's angular vel- 
ocity of rotation. As a matter of fact, for fixed a,fi,y sufficiently close to z/ljr 
stability or instability is preserved under any admissible p and, hence, for arbitrary X, 1,~. 

Analogous reasonings enable us to prove this statement for ellipsoid close in form to 
prolate ellipsoids of revolution (u = i; < y). 

5. Discussion of the results. Let us consider the connection of the parameters (Y, 
~r,b,y) introduced with the parameters used in /l-44/ for investigating the stability of libra- 
tion points Pi (Fig.1). In the papers mentioned the characteristic size CZCI was introduced 
from the relation f .lI ~(uoW) = 1, which permitted the Lagrange function to be represented as 

I; = 'i, (f.2 + 'I.2 + 5.2) + (En' - 115') + 112 (P + V) + I' 

in the dimensionless variables 5. q,c : .* = a&,r/ = aoq,z = 4 . In this case the force function 
is /6/ +- 

v=+ S( 
E‘ +q-q’;u 5” ) du ---i--- 

Y + 11 
Ir’ 

[(a’ + u) (p’ -t u) (7’ + IL)]“’ 

a’ = (I / a&z*, B’ = (I I noyp, y’ = (1 / ao)*p 1 f*l(a’+p’)+‘l’I(B’+~‘)+t2l(Y’+~‘)=~ 

In /l/ it was assumed that the squares of the principal semiaxes can be represented as 

a' = RP + iOao* c&.,/3, b* = Re + 10d b,,/3. c2 = R2 f lOa&%/ 

where R is the radius of a planet having the same volumeasthe ellipsod. The latter condition 

yields 

[(P + 20&q/3) (P _I- 1&z/$, / 3) (R2 + iOao* yo / ml"' = R* (5.1) 

The relations p = 1 / (2~~) = 3f M / (4oV), fM i (oW) = 1 enable us to determine I, ~20 = (3% i 2)‘!‘, 
where &I = F(v,cc? = 'pl (~,a, p,~). Hence, setting R’Ia% = vO,we obtain formulas for the mapping (VW 

""9 PO. V")'(V, a* B, Y) 
u0.~ = Yg + 10ho / 3 = h', 1 = a. 3, y, fR = I3qJ, (Y, a, 3, y) i 21':' 

The parameters (v,,c~,fi~,y~) used in /l/ (the parameter Y" is not explicitly defined), just as 

@,a, fJ.V)? are dependent. Indeed, condition (5.1) implies the dependency 

(1 + ioao / 3%) (1 + fop0 / 3%) (1 + 1oyo /3Y0) = 1 (5.2) 

Fig.4 
Fig.5 
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In /l/ the stability domain was obtained as follows. For a fixed VI and with theuse 
of power expansions with respect to cro.b,yO it was proved that for sufficiently small R,&,, 
Yo 

I cro I < 8 W. I Bo I < e W. I YO I < e W (5.3) 

this domain is specified by the inequality a<8. However, such a method does not yield a 
uniform estimate for the admissible limits of variation E(VO) for all vo and, consequently, 
&es not permit the theorem proved above to be obtained. For this it is necessary toknowthe 
geometry of the whole danain of stability in-the-large and not just local parts of it. The 
dependency ~+~o+70=0 used in /l/ instead of (5.2) , obtainable from (5.2) with due regard 
to terms linear in a+,fb,yo, is admissible under (5.3) only for a sufficiently small e depend- 
ing on vo. At the same time the parameters (v,a,p,v) enable us to achieve a result uniform 
in v rapidly and intuitively. 

The author thanks V. G. Demin, who suggested that the problem be investigated, for con- 
stant help and support during the work. 
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